sisl.viz.Plot
- class sisl.viz.Plot(*args, **kwargs)[source]
Bases:
Workflow
Base class for all plots
Methods
evaluate_input_node
(node)final_node_key
(*args)Returns the key of the final (output) node of the workflow.
find_node_key
(node, *args)Returns the identifier key of a node in this workflow
from_func
([func, context, module])Builds a node from a function.
from_node_tree
(output_node[, workflow_name])Creates a workflow class from a node.
get
()Returns the up to date output of the workflow.
Returns the label to be used in diagrams when displaying this node.
get_input
(key)get_tree
()is_output_outdated
(evaluated_inputs)Checks if the node needs to be ran
map_inputs
(inputs, func[, only_nodes, exclude])Maps all inputs of the node applying a given function.
merge
(*others, **kwargs)recursive_update_inputs
([cls])Updates the inputs of the node recursively.
setup
(*args, **kwargs)Sets up the node based on its initial inputs.
update_inputs
(**inputs)Updates the inputs of the workflow.
update_settings
(*args, **kwargs)Attributes
Last time the logs of this node were updated
- __call__(*args, **kwargs)
Call self as a function.
- static evaluate_input_node(node: Node)
- classmethod from_func(func: Callable | None = None, context: dict | None = None, module: str | None = None)
Builds a node from a function.
- Parameters:
func (
function
, optional) – The function to be converted to a node.If not provided, the return of this method is just a lambda function that expects the function. This is useful if you want to use this method as a decorator while also providing extra arguments (like the context argument).
context (
dict
, optional) – The context to be used as the default for the node class that will be created.
- classmethod from_node_tree(output_node: Node, workflow_name: str | None = None)
Creates a workflow class from a node.
It does so by recursively traversing the tree in the inputs direction until it finds the leaves. All the nodes found are included in the workflow. For each node, inputs that are not nodes are connected to the inputs of the workflow.
- Parameters:
output_node (
Node
) – The final node, that should be connected to the output of the workflow.workflow_name (
str
, optional) – The name of the new workflow class. If None, the name of the output node will be used.
- Returns:
Workflow
– The newly created workflow class.
- get()
Returns the up to date output of the workflow.
It will recompute it if necessary.
- get_diagram_label()
Returns the label to be used in diagrams when displaying this node.
- get_tree()
- map_inputs(inputs: Dict[str, Any], func: Callable, only_nodes: bool = False, exclude: Sequence[str] = ()) Dict[str, Any]
Maps all inputs of the node applying a given function.
It considers the args and kwargs keys.
- Parameters:
inputs (
Dict[str
,Any]
) – The inputs of the node.func (
Callable
) – The function to apply to each value.only_nodes (
bool
, optional) – Whether to apply the function only to nodes, by default False.exclude (
Sequence[str]
, optional) – The keys to exclude from the mapping. This means that these keys are returned as they are.
- recursive_update_inputs(cls: Type | Tuple[Type, ...] | None = None, **inputs)
Updates the inputs of the node recursively.
This method updates the inputs of get node and all its children.
- Parameters:
cls (
Optional[Union[Type
,Tuple[Type
,]]]
, optional) – Only update nodes of this class. If None, update all nodes.inputs (
Dict[str
,Any]
) – The inputs to update.
- setup(*args, **kwargs)
Sets up the node based on its initial inputs.
- update_inputs(**inputs)
Updates the inputs of the workflow.
- DELETE_KWARG = <object object>
- context: NodeContext = NodeContext({}, {}, {}, {'lazy': True, 'lazy_init': None, 'log_level': 'INFO', 'raise_custom_errors': False, 'on_init': None, 'batch_iter': 'zip'})
- property default_inputs
- dryrun_nodes: WorkflowNodes
- function: Callable
- property inputs
- network = <nodify.workflow.Network object>
- nodes: WorkflowNodes