Bibliography

[1]

János K. Asbóth, László Oroszlány, and András Pályi. A Short Course on Topological Insulators. Springer International Publishing, 2016. ISBN 9783319256054, 9783319256078. URL: https://doi.org/10.1007/978-3-319-25607-8, doi:10.1007/978-3-319-25607-8.

[2]

María Blanco de Paz, Chiara Devescovi, Geza Giedke, Juan José Saenz, Maia G. Vergniory, Barry Bradlyn, Dario Bercioux, and Aitzol García-Etxarri. Tutorial: Computing topological invariants in 2D photonic crystals. Adv. Quantum Technol., 3(2):1900117, December 2019. URL: https://doi.org/10.1002/qute.201900117, doi:10.1002/qute.201900117.

[3]

Jin Gan, Daye Zheng, and Lixin He. Calculation of berry curvature using nonorthogonal atomic orbitals. arXiv, 2021. arXiv:2105.14662.

[4]

Yimin Ji, Wenxu Zhang, Hongbin Zhang, and Wanli Zhang. Spin hall conductivity and anomalous hall conductivity in full heusler compounds. New Journal of Physics, 24(5):053027, May 2022. URL: http://dx.doi.org/10.1088/1367-2630/ac696c, doi:10.1088/1367-2630/ac696c.

[5]

D. D. Johnson. Modified broyden's method for accelerating convergence in self-consistent calculations. Phys. Rev. B, 38(18):12807–12813, December 1988. URL: https://doi.org/10.1103/physrevb.38.12807, doi:10.1103/physrevb.38.12807.

[6]

Nicola Marzari, David Vanderbilt, Alessandro De Vita, and M. C. Payne. Thermal contraction and disordering of the al(110) surface. Phys. Rev. Lett., 82(16):3296–3299, April 1999. URL: https://doi.org/10.1103/physrevlett.82.3296, doi:10.1103/physrevlett.82.3296.

[7]

N. C. Murphy, R. Wortis, and W. A. Atkinson. Generalized inverse participation ratio as a possible measure of localization for interacting systems. Phys. Rev. B, May 2011. URL: https://doi.org/10.1103/physrevb.83.184206, doi:10.1103/physrevb.83.184206.

[8]

Magnus Paulsson and Mads Brandbyge. Transmission eigenchannels from nonequilibrium green's functions. Phys. Rev. B, September 2007. URL: https://doi.org/10.1103/physrevb.76.115117, doi:10.1103/physrevb.76.115117.

[9]

Junfeng Qiao, Jiaqi Zhou, Zhe Yuan, and Weisheng Zhao. Calculation of intrinsic spin hall conductivity by wannier interpolation. Phys. Rev. B, 98:214402, Dec 2018. URL: https://link.aps.org/doi/10.1103/PhysRevB.98.214402, doi:10.1103/PhysRevB.98.214402.

[10]

Nick Rübner Papior. Computational Tools and Studies of Graphene Nanostructures. PhD thesis, Technical University of Denmark, 2016. URL: http://orbit.dtu.dk/en/publications/computational-tools-and-studies-of-graphene-nanostructures(46f34e1c-5f0c-46cb-be32-fff5f37881aa).html, doi:10.11581/DTU:00000025.

[11]

Raffaele Resta. Manifestations of berry's phase in molecules and condensed matter. J. Phys. Condens. Matter, 12(9):R107–R143, February 2000. URL: https://doi.org/10.1088/0953-8984/12/9/201, doi:10.1088/0953-8984/12/9/201.

[12]

Sanghita Sengupta, Thomas Frederiksen, and Geza Giedke. Hyperfine interactions in open-shell planar $sp^2$-carbon nanostructures. Phys. Rev. B, 107:224433, Jun 2023. URL: https://link.aps.org/doi/10.1103/PhysRevB.107.224433, doi:10.1103/PhysRevB.107.224433.

[13]

G. Trambly de Laissardière, D. Mayou, and L. Magaud. Localization of Dirac electrons in rotated graphene bilayers. Nano Lett., 10(3):804–808, February 2010. URL: https://doi.org/10.1021/nl902948m, doi:10.1021/nl902948m.

[14]

Xinjie Wang, Jonathan R. Yates, Ivo Souza, and David Vanderbilt. Ab initio calculation of the anomalous hall conductivity by wannier interpolation. Phys. Rev. B, November 2006. URL: https://doi.org/10.1103/physrevb.74.195118, doi:10.1103/physrevb.74.195118.

[15]

J. Zak. Berry's phase for energy bands in solids. Phys. Rev. Lett., 62(23):2747–2750, June 1989. URL: https://doi.org/10.1103/physrevlett.62.2747, doi:10.1103/physrevlett.62.2747.