PDOS
- sisl.physics.phonon.PDOS(E, mode, hw, distribution='gaussian')[source]
Calculate the projected density of modes (PDOS) onto each each atom and direction for a set of energies, E, with a distribution function
The \(\mathrm{PDOS}(E)\) is calculated as:
\[\mathrm{PDOS}_\alpha(E) = \sum_i \epsilon^*_{i,\alpha} \epsilon_{i,\alpha} D(E-\hbar\omega_i)\]where \(D(\Delta E)\) is the distribution function used. Note that the distribution function used may be a user-defined function. Alternatively a distribution function may be aquired from
distribution
.\[\mathrm{DOS}(E) = \sum_\alpha\mathrm{PDOS}_\alpha(E)\]- Parameters:
E (
array_like
) – energies to calculate the projected-DOS frommode (
array_like
) – eigenvectorshw (
array_like
) – eigenvaluesdistribution (
func
orstr
, optional) – a function that accepts \(E-\epsilon\) as argument and calculates the distribution function.
See also
sisl.physics.distribution
a selected set of implemented distribution functions
DOS
total DOS (same as summing over atoms and directions)
- Returns:
numpy.ndarray
– projected DOS calculated at energies, has dimension(mode.shape[1], len(E))
.