sisl.physics.Spin
- class sisl.physics.Spin
Bases:
object
Spin class to determine configurations and spin components.
The basic class
Spin
implements a generic method to determine a spin configuration.Its usage can be summarized in these few examples:
>>> Spin(Spin.UNPOLARIZED) == Spin("unpolarized") == Spin() True >>> Spin(Spin.POLARIZED) == Spin("polarized") == Spin("p") True >>> Spin(Spin.NONCOLINEAR, dtype=np.complex128) == Spin("non-collinear") == Spin("nc") True >>> Spin(Spin.SPINORBIT, dtype=np.complex128) == Spin("spin-orbit") == Spin("so") == Spin("soc") True >>> Spin(Spin.NAMBU) == Spin("nambu") == Spin("bdg") True
Note that a data-type may be associated with a spin-object. This is not to say that the data-type is used in the configuration, but merely that it helps any sub-classed or classes who use the spin-object to determine the usage of the different spin-components.
Methods
copy
()Create a copy of the spin-object
size
(dtype)Number of elements to describe the spin-components
Attributes
True if the configuration is polarized
Whether the spin-box is only using the diagonal components
True if the configuration is Nambu
True if the configuration non-collinear
True if the configuration is polarized
True if the configuration is spin-orbit
True if the configuration is not polarized
A unique ID for the kind of spin configuration
Number of spinor components (1, 2 or 4)
- size(dtype)[source]
Number of elements to describe the spin-components
- Parameters:
dtype (np.dtype) – data-type used to represent the spin-configuration
- Return type:
- NAMBU = 4
- NONCOLINEAR = 2
- POLARIZED = 1
- SPINORBIT = 3
- UNPOLARIZED = 0
- X = array([[0.+0.j, 1.+0.j], [1.+0.j, 0.+0.j]])
- Y = array([[ 0.+0.j, -0.-1.j], [ 0.+1.j, 0.+0.j]])
- Z = array([[ 1.+0.j, 0.+0.j], [ 0.+0.j, -1.+0.j]])