# This Source Code Form is subject to the terms of the Mozilla Public# License, v. 2.0. If a copy of the MPL was not distributed with this# file, You can obtain one at https://mozilla.org/MPL/2.0/.from__future__importannotations""" Eigenchannel calculator for any number of electrodesDeveloper: Nick PapiorContact: nickpapior <at> gmail.comsisl-version: >=0.11.0tbtrans-version: >=siesta-4.1.5This eigenchannel calculater uses TBtrans output to calculate the eigenchannelsfor N-terminal systems. In the future this will get transferred to the TBtrans codebut for now this may be used for arbitrary geometries.It requires two inputs and has several optional flags.- The siesta.TBT.nc file which contains the geometry that is to be calculated for The reason for using the siesta.TBT.nc file is the ease of use: The siesta.TBT.nc contains electrode atoms and device atoms. Hence it becomes easy to read in the electrode atomic positions. Note that since you'll always do a 0 V calculation this isn't making any implications for the requirement of the TBT.nc file."""fromnumbersimportIntegralfrompathlibimportPathimportnumpyasnpimportscipy.sparseassspfromscipy.sparse.linalgimportsvdsimportsislassifromsislimport_arrayas_afromsisl._internalimportset_modulefromsisl.linalgimport(cholesky,eigh,eigh_destroy,inv_destroy,signsqrt,solve,svd_destroy,)fromsisl.messagesimportwarnfromsisl.utils.miscimportPropertyDictarangei=_a.arangeiindices_only=si._indices.indices_onlyindices=si._indices.indicesconj=np.conj__all__=["PivotSelfEnergy","DownfoldSelfEnergy","DeviceGreen"]defdagger(M):returnconj(M.T)def_scat_state_svd(A,**kwargs):"""Calculating the SVD of matrix A for the scattering state Parameters ---------- A : numpy.ndarray matrix to obtain SVD from scale : bool or float, optional whether to scale matrix `A` to be above ``1e-12`` or by a user-defined number lapack_driver : str, optional driver queried from `scipy.linalg.svd` """scale=kwargs.get("scale",False)# Scale matrix by a factor to lie in [1e-12; inf[ifisinstance(scale,bool):ifscale:_=np.floor(np.log10(np.absolute(A).min())).astype(int)if_<-12:scale=10**(-12-_)else:scale=Falseifscale:A*=scale# Numerous accounts of SVD algorithms using gesdd results# in poor results when min(M, N) >= 26 (block size).# This may be an error in the D&C algorithm.# Here we resort to precision over time, but user may decide.driver=kwargs.get("driver","gesvd").lower()ifdriverin("arpack","lobpcg","sparse"):ifdriver=="sparse":driver="arpack"# scipy default# filter out keys for scipy.sparse.svdssvds_kwargs={key:kwargs[key]forkeyin("k","ncv","tol","v0")ifkeyinkwargs}# do not calculate vtsvds_kwargs["return_singular_vectors"]="u"svds_kwargs["solver"]=driverif"k"notinsvds_kwargs:k=A.shape[1]//2ifk<3:k=A.shape[1]-1svds_kwargs["k"]=kA,DOS,_=svds(A,**svds_kwargs)else:# it must be a lapack driver:A,DOS,_=svd_destroy(A,full_matrices=False,lapack_driver=driver)del_ifscale:DOS/=scale# A note of caution.# The DOS values are not actual DOS values.# In fact the DOS should be calculated as:# DOS * <i| S(k) |i># to account for the overlap matrix. For orthogonal basis sets# this DOS eigenvalue is correct.returnDOS**2/(2*np.pi),A@set_module("sisl_toolbox.btd")classPivotSelfEnergy(si.physics.SelfEnergy):"""Container for the self-energy object This may either be a `tbtsencSileTBtrans`, a `tbtgfSileTBtrans` or a sisl.SelfEnergy objectfile """def__init__(self,name,se,pivot=None):# Name of electrodeself.name=name# File containing the self-energy# This may be either of:# tbtsencSileTBtrans# tbtgfSileTBtrans# SelfEnergy object (for direct calculation)self._se=seifisinstance(se,si.io.tbtrans.tbtsencSileTBtrans):defse_func(*args,**kwargs):returnself._se.self_energy(self.name,*args,**kwargs)defbroad_func(*args,**kwargs):returnself._se.broadening_matrix(self.name,*args,**kwargs)else:defse_func(*args,**kwargs):returnself._se.self_energy(*args,**kwargs)defbroad_func(*args,**kwargs):returnself._se.broadening_matrix(*args,**kwargs)# Store the pivoting for faster indexingifpivotisNone:ifnotisinstance(se,si.io.tbtrans.tbtsencSileTBtrans):raiseValueError(f"{self.__class__.__name__} must be passed a sisl.io.tbtrans.tbtsencSileTBtrans. ""Otherwise use the DownfoldSelfEnergy method with appropriate arguments.")pivot=se# Pivoting indices for the self-energy for the device region# but with respect to the full system sizeself.pvt=pivot.pivot(name).reshape(-1,1)# Pivoting indices for the self-energy for the device region# but with respect to the device region onlyself.pvt_dev=pivot.pivot(name,in_device=True).reshape(-1,1)# the pivoting in the downfolding region (with respect to the full# system size)self.pvt_down=pivot.pivot_down(name).reshape(-1,1)# Retrieve BTD matrices for the corresponding electrodeself.btd=pivot.btd(name)# Get the individual matricescbtd=np.cumsum(self.btd)pvt_btd=[]o=0foriincbtd:# collect the pivoting indices for the downfoldingpvt_btd.append(self.pvt_down[o:i,0])o+=i# self.pvt_btd = np.concatenate(pvt_btd).reshape(-1, 1)# self.pvt_btd_sort = arangei(o)self._se_func=se_funcself._broad_func=broad_funcdef__str__(self):returnf"{self.__class__.__name__}{{no: {len(self)}}}"def__len__(self):returnlen(self.pvt_dev)
@set_module("sisl_toolbox.btd")classDownfoldSelfEnergy(PivotSelfEnergy):def__init__(self,name,se,pivot,Hdevice,eta_device=0,bulk=True,bloch=(1,1,1)):super().__init__(name,se,pivot)ifnp.allclose(bloch,1):def_bloch(func,k,*args,**kwargs):returnfunc(*args,k=k,**kwargs)self._bloch=_blochelse:self._bloch=si.Bloch(bloch)self._eta_device=eta_device# To re-create the downfoldable self-energies we need a few things:# pivot == for pivoting indices and BTD downfolding region# se == SelfEnergy for calculating self-energies and broadening matrix# Hdevice == device H for downfolding the electrode self-energy# bulk == whether the electrode self-energy argument should be passed bulk# or not# name == just the name# storage dataself._data=PropertyDict()self._data.bulk=bulk# Retain the device for only the downfold region# a_down is sorted!a_elec=pivot.a_elec(self.name)# Now figure out all the atoms in the downfolding region# pivot_down is the electrode + all orbitals including the orbitals# reaching into the devicepivot_down=pivot.pivot_down(self.name)# note that the last orbitals in pivot_down is the returned self-energies# that we want to calculate in this classgeometry=pivot.geometry# Figure out the full device part of the downfolding region# this will still be sorteddown_atoms=geometry.o2a(pivot_down,unique=True).astype(np.int32,copy=False)# this will also be sorteddown_orbitals=geometry.a2o(down_atoms,all=True).astype(np.int32,copy=False)# The orbital indices in self.H.device.geometry# which transfers the orbitals to the downfolding region# Now we need to figure out the pivoting indices from the sub-set# geometryself._data.H=PropertyDict()self._data.H.electrode=se.spgeom0self._data.H.device=Hdevice.sub(down_atoms)# geometry_down = self._data.H.device.geometry# Now we retain the positions of the electrode orbitals in the# non pivoted structure for inserting the self-energy# Once the down-folded matrix is formed we can pivot it# in the BTD class# The self-energy is inserted in the non-pivoted matrixo_elec=geometry.a2o(a_elec,all=True).astype(np.int32,copy=False)pvt=indices(down_orbitals,o_elec)self._data.elec=pvt[pvt>=0].reshape(-1,1)pvt=indices(down_orbitals,pivot_down)self._data.dev=pvt[pvt>=0].reshape(-1,1)# Create BTD indicesself._data.cumbtd=np.append(0,np.cumsum(self.btd))def__str__(self):eta=Nonetry:eta=self._se.etaexceptException:passse=str(self._se).replace("\n","\n ")returnf"{self.__class__.__name__}{{no: {len(self)}, blocks: {len(self.btd)}, eta: {eta}, eta_device: {self._eta_device},\n{se}\n}}"def__len__(self):returnlen(self._data.dev)def_check_Ek(self,E,k):ifhasattr(self._data,"E"):ifnp.allclose(self._data.E,E)andnp.allclose(self._data.k,k):# we have already prepared the calculationreturnTrueself._data.E=Eself._data.Ed=Eself._data.Eb=Eifnp.isrealobj(E):self._data.Ed=E+1j*self._eta_devicetry:self._data.Eb=E+1j*self._se.etaexceptException:passself._data.k=np.asarray(k,dtype=np.float64)returnFalsedef_prepare(self,E,k=(0,0,0)):ifself._check_Ek(E,k):return# Prepare the matricesdata=self._dataH=data.HEd=data.EdEb=data.Ebdata.SeH=H.device.Sk(k,dtype=np.complex128)*Ed-H.device.Hk(k,dtype=np.complex128)ifdata.bulk:defhsk(k,**kwargs):# constructor for the H and S partreturnH.electrode.Sk(k,**kwargs)*Eb-H.electrode.Hk(k,**kwargs)data.SeH[data.elec,data.elec.T]=self._bloch(hsk,k,format="array",dtype=np.complex128)
[docs]defself_energy(self,E,k=(0,0,0),*args,**kwargs):self._prepare(E,k)data=self._datase=self._bloch(super().self_energy,k,*args,E=E,**kwargs)# now put it in the matrixM=data.SeH.copy()M[data.elec,data.elec.T]-=se# transfer to BTDpvt=data.devcbtd=data.cumbtddefgM(M,idx1,idx2):returnM[pvt[idx1],pvt[idx2].T].toarray()Mr=0sli=slice(cbtd[0],cbtd[1])forbinrange(1,len(self.btd)):sli1=slice(cbtd[b],cbtd[b+1])Mr=gM(M,sli1,sli)@solve(gM(M,sli,sli)-Mr,gM(M,sli,sli1),overwrite_a=True,overwrite_b=True,)sli=sli1returnMr
@set_module("sisl_toolbox.btd")classBlockMatrixIndexer:def__init__(self,bm):self._bm=bmdef__len__(self):returnlen(self._bm.blocks)def__iter__(self):"""Loop contained indices in the BlockMatrix"""yield fromself._bm._M.keys()def__delitem__(self,key):ifnotisinstance(key,tuple):raiseValueError(f"{self.__class__.__name__} index deletion must be done with a tuple.")delself._bm._M[key]def__contains__(self,key):ifnotisinstance(key,tuple):raiseValueError(f"{self.__class__.__name__} index checking must be done with a tuple.")returnkeyinself._bm._Mdef__getitem__(self,key):ifnotisinstance(key,tuple):raiseValueError(f"{self.__class__.__name__} index retrieval must be done with a tuple.")M=self._bm._M.get(key)ifMisNone:i,j=key# the data-type is probably incorrect.. :(returnnp.zeros([self._bm.blocks[i],self._bm.blocks[j]])returnMdef__setitem__(self,key,M):ifnotisinstance(key,tuple):raiseValueError(f"{self.__class__.__name__} index setting must be done with a tuple.")s=(self._bm.blocks[key[0]],self._bm.blocks[key[1]])assert(M.shape==s),f"Could not assign matrix of shape {M.shape} into matrix of shape {s}"self._bm._M[key]=M@set_module("sisl_toolbox.btd")classBlockMatrix:"""Container class that holds a block matrix"""def__init__(self,blocks):self._M={}self._blocks=blocks@propertydefblocks(self):returnself._blocksdeftoarray(self):BI=self.block_indexernb=len(BI)# stack stuff togetherreturnnp.concatenate([np.concatenate([BI[i,j]foriinrange(nb)],axis=0)forjinrange(nb)],axis=1,)deftobtd(self):"""Return only the block tridiagonal part of the matrix"""ret=self.__class__(self.blocks)sBI=self.block_indexerrBI=ret.block_indexernb=len(sBI)forjinrange(nb):foriinrange(max(0,j-1),min(j+2,nb)):rBI[i,j]=sBI[i,j]returnretdeftobd(self):"""Return only the block diagonal part of the matrix"""ret=self.__class__(self.blocks)sBI=self.block_indexerrBI=ret.block_indexernb=len(sBI)foriinrange(nb):rBI[i,i]=sBI[i,i]returnretdefdiagonal(self):BI=self.block_indexerreturnnp.concatenate([BI[b,b].diagonal()forbinrange(len(BI))])@propertydefblock_indexer(self):returnBlockMatrixIndexer(self)@set_module("sisl_toolbox.btd")classDeviceGreen:r"""Block-tri-diagonal Green function calculator This class enables the extraction and calculation of some important quantities not currently accessible in TBtrans. For instance it may be used to calculate scattering states from the Green function. Once scattering states have been calculated one may also calculate the eigenchannels. Both calculations are very efficient and uses very little memory compared to the full matrices normally used. Consider a regular 2 electrode setup with transport direction along the 3rd lattice vector. Then the following example may be used to calculate the eigen-channels. The below short-form of reading all variables should cover most variables encountered in the FDF file. .. code-block:: python G = DeviceGreen.from_fdf("RUN.fdf") # Calculate the scattering state from the left electrode # and then the eigen channels to the right electrode state = G.scattering_state("Left", E=0.1) eig_channel = G.eigenchannel(state, "Right") The above ``DeviceGreen.from_fdf`` is a short-hand for something like the below (it actually does more than that, so prefer the `from_fdf`): .. code-block:: python import sisl from sisl_toolbox.btd import * # First read in the required data H_elec = sisl.Hamiltonian.read("ELECTRODE.nc") H = sisl.Hamiltonian.read("DEVICE.nc") # remove couplings along the self-energy direction # to ensure no fake couplings. H.set_nsc(c=1) # Read in a single tbtrans output which contains the BTD matrices # and instructs this class how it should pivot the matrix to obtain # a BTD matrix. tbt = sisl.get_sile("siesta.TBT.nc") # Define the self-energy calculators which will downfold the # self-energies into the device region. # Since a downfolding will be done it requires the device Hamiltonian. H_elec.shift(tbt.mu("Left")) left = DownfoldSelfEnergy("Left", s.RecursiveSI(H_elec, "-C", eta=tbt.eta("Left"), tbt, H) H_elec.shift(tbt.mu("Right")) left = DownfoldSelfEnergy("Right", s.RecursiveSI(H_elec, "+C", eta=tbt.eta("Right"), tbt, H) G = DeviceGreen(H, [left, right], tbt) Notes ----- Currently one cannot use these classes to calculate the scattering-states/eigenchannels for the spin-down component of a polarized calculation. One has to explicitly remove the spin-up component of the Hamiltonians before doing the calculations. """# TODO we should speed this up by overwriting A with the inverse once# calculated. We don't need it at that point.# That would probably require us to use a method to retrieve# the elements which determines if it has been calculated or not.def__init__(self,H,elecs,pivot,eta=0.0):"""Create Green function with Hamiltonian and BTD matrix elements"""self.H=H# Store electrodes (for easy retrieval of the SE)# There may be no electrodesself.elecs=elecs# self.elecs_pvt = [pivot.pivot(el.name).reshape(-1, 1)# for el in elecs]self.elecs_pvt_dev=[pivot.pivot(el.name,in_device=True).reshape(-1,1)forelinelecs]self.pvt=pivot.pivot()self.btd=pivot.btd()# global device etaself.eta=eta# Create BTD indicesself.btd_cum0=np.empty([len(self.btd)+1],dtype=self.btd.dtype)self.btd_cum0[0]=0self.btd_cum0[1:]=np.cumsum(self.btd)self.reset()def__str__(self):ret=f"{self.__class__.__name__}{{no: {len(self)}, blocks: {len(self.btd)}, eta: {self.eta:.3e}"forelecinself.elecs:e=str(elec).replace("\n","\n ")ret=f"{ret},\n{elec.name}:\n{e}"returnf"{ret}\n}}"
[docs]@classmethoddeffrom_fdf(cls,fdf,prefix="TBT",use_tbt_se=False,eta=None):"""Return a new `DeviceGreen` using information gathered from the fdf Parameters ---------- fdf : str or fdfSileSiesta fdf file to read the parameters from prefix : {"TBT", "TS"} which prefix to use, if TBT it will prefer TBT prefix, but fall back to TS prefixes. If TS, only these prefixes will be used. use_tbt_se : bool, optional whether to use the TBT.SE.nc files for self-energies or calculate them on the fly. """ifnotisinstance(fdf,si.BaseSile):fdf=si.io.siesta.fdfSileSiesta(fdf)# Now read the values neededslabel=fdf.get("SystemLabel","siesta")# Test if the TBT output file exists:tbt=Noneforendin("TBT.nc","TBT_UP.nc","TBT_DN.nc"):ifPath(f"{slabel}.{end}").is_file():tbt=f"{slabel}.{end}"iftbtisNone:raiseFileNotFoundError(f"{cls.__name__}.from_fdf could "f"not find file {slabel}.[TBT|TBT_UP|TBT_DN].nc")tbt=si.get_sile(tbt)is_tbtrans=prefix.upper()=="TBT"# Read the device H, only valid for TBT stuffforhs_extin("TS.HSX","TSHS","HSX"):ifPath(f"{slabel}.{hs_ext}").exists():# choose a sane default (if it exists!)hs_default=f"{slabel}.{hs_ext}"breakelse:hs_default=f"{slabel}.TSHS"Hdev=si.get_sile(fdf.get("TBT.HS",hs_default)).read_hamiltonian()defget_line(line):"""Parse lines in the %block constructs of fdf's"""key,val=line.split(" ",1)returnkey.lower().strip(),val.split("#",1)[0].strip()defread_electrode(elec_prefix):"""Parse the electrode information and return a dictionary with content"""fromsisl.unit.siestaimportunit_convertret=PropertyDict()ifis_tbtrans:defblock_get(dic,key,default=None,unit=None):ret=dic.get(f"tbt.{key}",dic.get(key,default))ifunitisNoneornotisinstance(ret,str):returnretret,un=ret.split()returnfloat(ret)*unit_convert(un,unit)else:defblock_get(dic,key,default=None,unit=None):ret=dic.get(key,default)ifunitisNoneornotisinstance(ret,str):returnretret,un=ret.split()returnfloat(ret)*unit_convert(un,unit)tbt_prefix=f"TBT.{elec_prefix}"ts_prefix=f"TS.{elec_prefix}"block=fdf.get(f"{ts_prefix}")Helec=fdf.get(f"{ts_prefix}.HS")bulk=fdf.get("TS.Elecs.Bulk",True)eta=fdf.get("TS.Elecs.Eta",1e-3,unit="eV")bloch=[1,1,1]foriinrange(3):bloch[i]=fdf.get(f"{ts_prefix}.Bloch.A{i+1}",1)ifis_tbtrans:block=fdf.get(f"{tbt_prefix}",block)Helec=fdf.get(f"{tbt_prefix}.HS",Helec)bulk=fdf.get("TBT.Elecs.Bulk",bulk)eta=fdf.get("TBT.Elecs.Eta",eta,unit="eV")foriinrange(3):bloch[i]=fdf.get(f"{tbt_prefix}.Bloch.A{i+1}",bloch[i])# Convert to key value based functiondic={key:valforkey,valinmap(get_line,block)}# Retrieve dataforkeyin("hs","hs-file","tshs","tshs-file"):Helec=block_get(dic,key,Helec)ifHelec:Helec=si.get_sile(Helec).read_hamiltonian()else:raiseValueError(f"{cls.__name__}.from_fdf could not find "f"electrode HS in block: {prefix} ??")# Get semi-infinite directionsemi_inf=Noneforsufin("-direction","-dir",""):semi_inf=block_get(dic,f"semi-inf{suf}",semi_inf)ifsemi_infisNone:raiseValueError(f"{cls.__name__}.from_fdf could not find "f"electrode semi-inf-direction in block: {prefix} ??")# convert to sisl infinitesemi_inf=semi_inf.lower()semi_inf=semi_inf[0]+{"a1":"a","a2":"b","a3":"c"}.get(semi_inf[1:],semi_inf[1:])# Check that semi_inf is a recursive one!ifsemi_infnotin("-a","+a","-b","+b","-c","+c"):raiseNotImplementedError(f"{cls.__name__} does not implement other ""self energies than the recursive one.")bulk=bool(block_get(dic,"bulk",bulk))# loop for 0fori,sufsinenumerate([("a","a1"),("b","a2"),("c","a3")]):forsufinsufs:bloch[i]=block_get(dic,f"bloch-{suf}",bloch[i])bloch=[int(b)forbinblock_get(dic,"bloch",f"{bloch[0]}{bloch[1]}{bloch[2]}").split()]ret.eta=block_get(dic,"eta",eta,unit="eV")# manual shift of the fermi-leveldEf=block_get(dic,"delta-Ef",0.0,unit="eV")# shift electronic structure here, we store it in the returned# dictionary, for information, but it shouldn't be used.Helec.shift(dEf)ret.dEf=dEf# add a fraction of the bias in the coupling elements of the# E-C region, only meaningful forret.V_fraction=block_get(dic,"V-fraction",0.0)ifret.V_fraction>0.0:warn(f"{cls.__name__}.from_fdf(electrode={elec}) found a non-zero V-fraction value. ""This is currently not implemented.")ret.Helec=Helecret.bloch=blochret.semi_inf=semi_infret.bulk=bulkreturnret# Loop electrodes and read in and construct dataifisinstance(use_tbt_se,bool):ifuse_tbt_se:use_tbt_se=tbt.elecselse:use_tbt_se=[]elifisinstance(use_tbt_se,str):use_tbt_se=[use_tbt_se]elec_data={}eta_dev=1e123forelecintbt.elecs:# read from the blockdata=read_electrode(f"Elec.{elec}")elec_data[elec]=data# read from the TBT file (to check if the user has changed the input file)elec_eta=tbt.eta(elec)ifnotnp.allclose(elec_eta,data.eta):warn(f"{cls.__name__}.from_fdf(electrode={elec}) found inconsistent "f"imaginary eta from the fdf vs. TBT output, will use fdf value.\n"f" {tbt} = {eta} eV\n{fdf} = {data.eta} eV")bloch=tbt.bloch(elec)ifnotnp.allclose(bloch,data.bloch):warn(f"{cls.__name__}.from_fdf(electrode={elec}) found inconsistent "f"Bloch expansions from the fdf vs. TBT output, will use fdf value.\n"f" {tbt} = {bloch}\n{fdf} = {data.bloch}")eta_dev=min(data.eta,eta_dev)# Correct by a factor 1/10 to minimize smearing for device states.# We want the electrode to smear.eta_dev/=10# Now we can estimate the device eta value.# It is based on the electrode valueseta_dev_tbt=tbt.eta()ifis_tbtrans:eta_dev=fdf.get("TBT.Contours.Eta",eta_dev,unit="eV")else:eta_dev=fdf.get("TS.Contours.nEq.Eta",eta_dev,unit="eV")ifetaisnotNone:# use passed optioneta_dev=etaelifnotnp.allclose(eta_dev,eta_dev_tbt):warn(f"{cls.__name__}.from_fdf found inconsistent "f"imaginary eta from the fdf vs. TBT output, will use fdf value.\n"f" {tbt} = {eta_dev_tbt} eV\n{fdf} = {eta_dev} eV")elecs=[]forelecintbt.elecs:mu=tbt.mu(elec)data=elec_data[elec]ifelecinuse_tbt_se:ifPath(f"{slabel}.TBT.SE.nc").is_file():tbtse=si.get_sile(f"{slabel}.TBT.SE.nc")else:raiseFileNotFoundError(f"{cls.__name__}.from_fdf "f"could not find file {slabel}.TBT.SE.nc ""but it was requested by 'use_tbt_se'!")# shift according to potentialdata.Helec.shift(mu)data.mu=muse=si.RecursiveSI(data.Helec,data.semi_inf,eta=data.eta)# Limit connections of the device along the semi-inf directions# TODO check whether there are systems where it is important# we do all set_nsc before passing it for each electrode.kw={"abc"[se.semi_inf]:1}Hdev.set_nsc(**kw)ifelecinuse_tbt_se:elec_se=PivotSelfEnergy(elec,tbtse)else:elec_se=DownfoldSelfEnergy(elec,se,tbt,Hdev,eta_device=eta_dev,bulk=data.bulk,bloch=data.bloch,)elecs.append(elec_se)returncls(Hdev,elecs,tbt,eta_dev)
[docs]defreset(self):"""Clean any memory used by this object"""self._data=PropertyDict()
def__len__(self):returnlen(self.pvt)def_elec(self,elec):"""Convert a string electrode to the proper linear index"""ifisinstance(elec,str):foriel,elinenumerate(self.elecs):ifel.name==elec:returnielelifisinstance(elec,PivotSelfEnergy):returnself._elec(elec.name)returnelecdef_elec_name(self,elec):"""Convert an electrode index or str to the name of the electrode"""ifisinstance(elec,str):returnelecelifisinstance(elec,PivotSelfEnergy):returnelec.namereturnself.elecs[elec].namedef_check_Ek(self,E,k):ifhasattr(self._data,"E"):ifnp.allclose(self._data.E,E)andnp.allclose(self._data.k,k):# we have already prepared the calculationreturnTrue# while resetting is not necessary, it can# save a lot of memory since some arrays are not# temporarily stored twice.self.reset()self._data.E=Eself._data.Ec=Eifnp.isrealobj(E):self._data.Ec=E+1j*self.etaself._data.k=np.asarray(k,dtype=np.float64)returnFalsedef_prepare_se(self,E,k):ifself._check_Ek(E,k):returnE=self._data.Ek=self._data.k# Create all self-energies (and store the Gamma's)se=[]gamma=[]forelecinself.elecs:# Insert valuesSE=elec.self_energy(E,k)se.append(SE)gamma.append(elec.se2broadening(SE))self._data.se=seself._data.gamma=gammadef_prepare_tgamma(self,E,k,cutoff):ifself._check_Ek(E,k)andhasattr(self._data,"tgamma"):ifabs(cutoff-self._data.tgamma_cutoff)<1e-13:return# ensure we have the self-energiesself._prepare_se(E,k)# Get the sqrt of the level broadening matrixdefeigh_sqrt(gam,cutoff):eig,U=eigh(gam)idx=(eig>=cutoff).nonzero()[0]eig=np.emath.sqrt(eig[idx])returneig*U.T[idx].Ttgamma=[]forgaminself._data.gamma:tgamma.append(eigh_sqrt(gam,cutoff))self._data.tgamma=tgammaself._data.tgamma_cutoff=cutoffdef_prepare(self,E,k):ifself._check_Ek(E,k)andhasattr(self._data,"A"):returndata=self._dataE=data.E# device region: E + 1j*etaEc=data.Eck=data.k# Prepare the Green function calculationinv_G=self.H.Sk(k,dtype=np.complex128)*Ec-self.H.Hk(k,dtype=np.complex128)# Now reduce the sparse matrix to the device region (plus do the pivoting)inv_G=inv_G[self.pvt,:][:,self.pvt]# Create all self-energies (and store the Gamma's)gamma=[]forelecinself.elecs:# Insert valuesSE=elec.self_energy(E,k)inv_G[elec.pvt_dev,elec.pvt_dev.T]-=SEgamma.append(elec.se2broadening(SE))delSEdata.gamma=gammanb=len(self.btd)nbm1=nb-1# Now we have all needed to calculate the inverse parts of the Green functionA=[None]*nbB=[0]*nbC=[0]*nb# Now we can calculate everythingcbtd=self.btd_cum0sl0=slice(cbtd[0],cbtd[1])slp=slice(cbtd[1],cbtd[2])# initial matrix A and CiG=inv_G[sl0,:].tocsc()A[0]=iG[:,sl0].toarray()C[1]=iG[:,slp].toarray()forbinrange(1,nbm1):# rotate slicessln=sl0sl0=slpslp=slice(cbtd[b+1],cbtd[b+2])iG=inv_G[sl0,:].tocsc()B[b-1]=iG[:,sln].toarray()A[b]=iG[:,sl0].toarray()C[b+1]=iG[:,slp].toarray()# and final matrix A and BiG=inv_G[slp,:].tocsc()A[nbm1]=iG[:,slp].toarray()B[nbm1-1]=iG[:,sl0].toarray()# clean-up, not used anymoredelinv_Gdata.A=Adata.B=Bdata.C=C# Now do propagation forward, tilde matricestX=[0]*nbtY=[0]*nb# \tilde YtY[1]=solve(A[0],C[1])# \tilde XtX[-2]=solve(A[-1],B[-2])forninrange(2,nb):p=nb-n-1# \tilde YtY[n]=solve(A[n-1]-B[n-2]@tY[n-1],C[n],overwrite_a=True)# \tilde XtX[p]=solve(A[p+1]-C[p+2]@tX[p+1],B[p],overwrite_a=True)data.tX=tXdata.tY=tYdef_matrix_to_btd(self,M):BM=BlockMatrix(self.btd)BI=BM.block_indexerc=self.btd_cum0nb=len(BI)ifssp.issparse(M):forjbinrange(nb):foribinrange(max(0,jb-1),min(jb+2,nb)):BI[ib,jb]=M[c[ib]:c[ib+1],c[jb]:c[jb+1]].toarray()else:forjbinrange(nb):foribinrange(max(0,jb-1),min(jb+2,nb)):BI[ib,jb]=M[c[ib]:c[ib+1],c[jb]:c[jb+1]]returnBM
def_get_blocks(self,idx):# Figure out which blocks are requestedblock1=(idx.min()<self.btd_cum0[1:]).nonzero()[0][0]block2=(idx.max()<self.btd_cum0[1:]).nonzero()[0][0]ifblock1==block2:blocks=[block1]else:blocks=[bforbinrange(block1,block2+1)]returnblocks
[docs]defgreen(self,E,k=(0,0,0),format="array"):r"""Calculate the Green function for a given `E` and `k` point The Green function is calculated as: .. math:: \mathbf G(E,\mathbf k) = \big[\mathbf S(\mathbf k) E - \mathbf H(\mathbf k) - \sum \boldsymbol \Sigma(E,\mathbf k)\big]^{-1} Parameters ---------- E : float the energy to calculate at, may be a complex value. k : array_like, optional k-point to calculate the Green function at format : {"array", "btd", "bm", "bd", "sparse"} return the matrix in a specific format - array: a regular numpy array (full matrix) - btd: a block-matrix object with only the diagonals and first off-diagonals - bm: a block-matrix object with diagonals and all off-diagonals - bd: a block-matrix object with only diagonals (no off-diagonals) - sparse: a sparse-csr matrix for the sparse elements as found in the Hamiltonian """self._prepare(E,k)format=format.lower()ifformat=="dense":format="array"func=getattr(self,f"_green_{format}",None)iffuncisNone:raiseValueError(f"{self.__class__.__name__}.green format not valid input [array|sparse|bm|btd|bd]")returnfunc()
def_green_array(self):"""Calculate the Green function on a full np.array matrix"""n=len(self.pvt)G=np.empty([n,n],dtype=self._data.A[0].dtype)btd=self.btdnb=len(btd)nbm1=nb-1sumbs=0A=self._data.AB=self._data.BC=self._data.CtX=self._data.tXtY=self._data.tYforb,bsinenumerate(btd):sl0=slice(sumbs,sumbs+bs)# Calculate diagonal partifb==0:G[sl0,sl0]=inv_destroy(A[b]-C[b+1]@tX[b])elifb==nbm1:G[sl0,sl0]=inv_destroy(A[b]-B[b-1]@tY[b])else:G[sl0,sl0]=inv_destroy(A[b]-B[b-1]@tY[b]-C[b+1]@tX[b])# Do abovenext_sum=sumbsslp=sl0forainrange(b-1,-1,-1):# Calculate all parts abovesla=slice(next_sum-btd[a],next_sum)G[sla,sl0]=-tY[a+1]@G[slp,sl0]slp=slanext_sum-=btd[a]sl0=slice(sumbs,sumbs+bs)# Step blocksumbs+=bs# Do belownext_sum=sumbsslp=sl0forainrange(b+1,nb):# Calculate all parts abovesla=slice(next_sum,next_sum+btd[a])G[sla,sl0]=-tX[a-1]@G[slp,sl0]slp=slanext_sum+=btd[a]returnGdef_green_btd(self):"""Calculate the Green function only in the BTD matrix elements. Stored in a `BlockMatrix` class."""G=BlockMatrix(self.btd)BI=G.block_indexernb=len(BI)nbm1=nb-1A=self._data.AB=self._data.BC=self._data.CtX=self._data.tXtY=self._data.tYforbinrange(nb):# Calculate diagonal partifb==0:G11=inv_destroy(A[b]-C[b+1]@tX[b])elifb==nbm1:G11=inv_destroy(A[b]-B[b-1]@tY[b])else:G11=inv_destroy(A[b]-B[b-1]@tY[b]-C[b+1]@tX[b])BI[b,b]=G11# do aboveifb>0:BI[b-1,b]=-tY[b]@G11# do belowifb<nbm1:BI[b+1,b]=-tX[b]@G11returnGdef_green_bm(self):"""Calculate the full Green function. Stored in a `BlockMatrix` class."""G=self._green_btd()BI=G.block_indexernb=len(BI)nbm1=nb-1tX=self._data.tXtY=self._data.tYforbinrange(nb):G0=BI[b,b]forbbinrange(b,0,-1):G0=-tY[bb]@G0BI[bb-1,b]=G0G0=BI[b,b]forbbinrange(b,nbm1):G0=-tX[bb]@G0BI[bb+1,b]=G0returnGdef_green_bd(self):"""Calculate the Green function only along the diagonal block matrices. Stored in a `BlockMatrix` class."""G=BlockMatrix(self.btd)BI=G.block_indexernb=len(BI)nbm1=nb-1A=self._data.AB=self._data.BC=self._data.CtX=self._data.tXtY=self._data.tYBI[0,0]=inv_destroy(A[0]-C[1]@tX[0])forbinrange(1,nbm1):# Calculate diagonal partBI[b,b]=inv_destroy(A[b]-B[b-1]@tY[b]-C[b+1]@tX[b])BI[nbm1,nbm1]=inv_destroy(A[nbm1]-B[nbm1-1]@tY[nbm1])returnGdef_green_sparse(self):"""Calculate the Green function only in where the sparse H and S are non-zero. Stored in a `scipy.sparse.csr_matrix` class."""# create a sparse matrixG=self.H.Sk(format="csr",dtype=self._data.A[0].dtype)# pivot the matrixG=G[self.pvt,:][:,self.pvt]# Get row and column entriesncol=np.diff(G.indptr)row=(ncol>0).nonzero()[0]# Now we have [0 0 0 0 1 1 1 1 2 2 ... no-1 no-1]row=np.repeat(row.astype(np.int32,copy=False),ncol[row])col=G.indicesdefget_idx(row,col,row_b,col_b=None):ifcol_bisNone:col_b=row_bidx=(row_b[0]<=row).nonzero()[0]idx=idx[row[idx]<row_b[1]]idx=idx[col_b[0]<=col[idx]]returnidx[col[idx]<col_b[1]]btd=self.btdnb=len(btd)nbm1=nb-1A=self._data.AB=self._data.BC=self._data.CtX=self._data.tXtY=self._data.tYsumbsn,sumbs,sumbsp=0,0,0forb,bsinenumerate(btd):sumbsp=sumbs+bsifb<nbm1:bsp=btd[b+1]# Calculate diagonal partifb==0:GM=inv_destroy(A[b]-C[b+1]@tX[b])elifb==nbm1:GM=inv_destroy(A[b]-B[b-1]@tY[b])else:GM=inv_destroy(A[b]-B[b-1]@tY[b]-C[b+1]@tX[b])# get all entries where G is non-zeroidx=get_idx(row,col,(sumbs,sumbsp))G.data[idx]=GM[row[idx]-sumbs,col[idx]-sumbs]# check if we should do block aboveifb>0:idx=get_idx(row,col,(sumbsn,sumbs),(sumbs,sumbsp))iflen(idx)>0:G.data[idx]=-(tY[b]@GM)[row[idx]-sumbsn,col[idx]-sumbs]# check if we should do block belowifb<nbm1:idx=get_idx(row,col,(sumbsp,sumbsp+bsp),(sumbs,sumbsp))iflen(idx)>0:G.data[idx]=-(tX[b]@GM)[row[idx]-sumbsp,col[idx]-sumbs]bsn=bssumbsn=sumbssumbs+=bsreturnGdef_green_diag_block(self,idx):"""Calculate the Green function only on specific (neighboring) diagonal block matrices. Stored in a `np.array` class."""nb=len(self.btd)nbm1=nb-1# Find parts we need to calculateblocks=self._get_blocks(idx)assert(len(blocks)<=2),f"{self.__class__.__name__} green(diagonal) requires maximally 2 blocks"iflen(blocks)==2:assert(blocks[0]+1==blocks[1]),f"{self.__class__.__name__} green(diagonal) requires spanning only 2 blocks"n=self.btd[blocks].sum()G=np.empty([n,len(idx)],dtype=self._data.A[0].dtype)btd=self.btdc=self.btd_cum0A=self._data.AB=self._data.BC=self._data.CtX=self._data.tXtY=self._data.tYforbinblocks:# Find the indices in the blocki=idx[c[b]<=idx]i=i[i<c[b+1]].astype(np.int32)b_idx=indices_only(arangei(c[b],c[b+1]),i)ifb==blocks[0]:sl=slice(0,btd[b])c_idx=arangei(len(b_idx))else:sl=slice(btd[blocks[0]],btd[blocks[0]]+btd[b])c_idx=arangei(len(idx)-len(b_idx),len(idx))ifb==0:G[sl,c_idx]=inv_destroy(A[b]-C[b+1]@tX[b])[:,b_idx]elifb==nbm1:G[sl,c_idx]=inv_destroy(A[b]-B[b-1]@tY[b])[:,b_idx]else:G[sl,c_idx]=inv_destroy(A[b]-B[b-1]@tY[b]-C[b+1]@tX[b])[:,b_idx]iflen(blocks)==1:break# Now calculate the thing (below/above)ifb==blocks[0]:# Calculate belowslp=slice(btd[b],btd[b]+btd[blocks[1]])G[slp,c_idx]=-tX[b]@G[sl,c_idx]else:# Calculate aboveslp=slice(0,btd[blocks[0]])G[slp,c_idx]=-tY[b]@G[sl,c_idx]returnblocks,Gdef_green_column(self,idx):"""Calculate the full Green function column for a subset of columns. Stored in a `np.array` class."""# To calculate the full Gf for specific column indices# These indices should maximally be spanning 2 blocksnb=len(self.btd)nbm1=nb-1# Find parts we need to calculateblocks=self._get_blocks(idx)assert(len(blocks)<=2),f"{self.__class__.__name__}.green(column) requires maximally 2 blocks"iflen(blocks)==2:assert(blocks[0]+1==blocks[1]),f"{self.__class__.__name__}.green(column) requires spanning only 2 blocks"n=len(self)G=np.empty([n,len(idx)],dtype=self._data.A[0].dtype)c=self.btd_cum0A=self._data.AB=self._data.BC=self._data.CtX=self._data.tXtY=self._data.tYforbinblocks:# Find the indices in the blocki=idx[c[b]<=idx]i=i[i<c[b+1]].astype(np.int32)b_idx=indices_only(arangei(c[b],c[b+1]),i)ifb==blocks[0]:c_idx=arangei(len(b_idx))else:c_idx=arangei(len(idx)-len(b_idx),len(idx))sl=slice(c[b],c[b+1])ifb==0:G[sl,c_idx]=inv_destroy(A[b]-C[b+1]@tX[b])[:,b_idx]elifb==nbm1:G[sl,c_idx]=inv_destroy(A[b]-B[b-1]@tY[b])[:,b_idx]else:G[sl,c_idx]=inv_destroy(A[b]-B[b-1]@tY[b]-C[b+1]@tX[b])[:,b_idx]iflen(blocks)==1:break# Now calculate above/belowsl=slice(c[b],c[b+1])ifb==blocks[0]andb<nb-1:# Calculate belowslp=slice(c[b+1],c[b+2])G[slp,c_idx]=-tX[b]@G[sl,c_idx]elifb>0:# Calculate aboveslp=slice(c[b-1],c[b])G[slp,c_idx]=-tY[b]@G[sl,c_idx]# Now we can calculate the Gf column aboveb=blocks[0]slp=slice(c[b],c[b+1])forbinrange(blocks[0]-1,-1,-1):sl=slice(c[b],c[b+1])G[sl,:]=-tY[b+1]@G[slp,:]slp=sl# All blocks belowb=blocks[-1]slp=slice(c[b],c[b+1])forbinrange(blocks[-1]+1,nb):sl=slice(c[b],c[b+1])G[sl,:]=-tX[b-1]@G[slp,:]slp=slreturnG
[docs]defspectral(self,elec,E,k=(0,0,0),format:str="array",method:str="column",herm:bool=True,):r"""Calculate the spectral function for a given `E` and `k` point from a given electrode The spectral function is calculated as: .. math:: \mathbf A_{\mathfrak{e}}(E,\mathbf k) = \mathbf G(E,\mathbf k)\boldsymbol\Gamma_{\mathfrak{e}}(E,\mathbf k) \mathbf G^\dagger(E,\mathbf k) Parameters ---------- elec : str or int the electrode to calculate the spectral function from E : float the energy to calculate at, may be a complex value. k : array_like, optional k-point to calculate the spectral function at format : {"array", "btd", "bm", "bd"} return the matrix in a specific format - array: a regular numpy array (full matrix) - btd: a block-matrix object with only the diagonals and first off-diagonals - bm: a block-matrix object with diagonals and all off-diagonals - bd: same as btd, since they are already calculated method : {"column", "propagate"} which method to use for calculating the spectral function. Depending on the size of the BTD blocks one may be faster than the other. For large systems you are recommended to time the different methods and stick with the fastest one, they are numerically identical. herm: The spectral function is a Hermitian matrix, by default (True), the methods that can utilize the Hermitian property only calculates the lower triangular part of :math:`\mathbf A`, and then copies the Hermitian to the upper part. By setting this to `False` the entire matrix is explicitly calculated. """# the herm flag is considered useful for testing, there is no need to# play with it. So it isn't documented.elec=self._elec(elec)self._prepare(E,k)format=format.lower()method=method.lower()ifformat=="dense":format="array"elifformat=="bd":# the bd also returns the off-diagonal ones since# they are needed to calculate the diagonal terms anyway.format="btd"func=getattr(self,f"_spectral_{method}_{format}",None)iffuncisNone:raiseValueError(f"{self.__class__.__name__}.spectral combination of format+method not recognized {format}+{method}.")returnfunc(elec,herm)
def_spectral_column_array(self,elec,herm):"""Spectral function from a column array (`herm` not used)"""G=self._green_column(self.elecs_pvt_dev[elec].ravel())# Now calculate the full spectral functionreturnG@self._data.gamma[elec]@dagger(G)def_spectral_column_bm(self,elec,herm):"""Spectral function from a column array Returns a `BlockMatrix` class with all elements calculated. Parameters ---------- herm: bool if true, only calculate the lower triangular part, and copy the Hermitian part to the upper triangular part. Else, calculate the full matrix via MM. """G=self._green_column(self.elecs_pvt_dev[elec].ravel())nb=len(self.btd)Gam=self._data.gamma[elec]# Now calculate the full spectral functionbtd=BlockMatrix(self.btd)BI=btd.block_indexerc=self.btd_cum0ifherm:# loop columnsforjbinrange(nb):slj=slice(c[jb],c[jb+1])Gj=Gam@dagger(G[slj,:])foribinrange(jb):sli=slice(c[ib],c[ib+1])BI[ib,jb]=G[sli,:]@GjBI[jb,ib]=BI[ib,jb].T.conj()BI[jb,jb]=G[slj,:]@Gjelse:# loop columnsforjbinrange(nb):slj=slice(c[jb],c[jb+1])Gj=Gam@dagger(G[slj,:])foribinrange(nb):sli=slice(c[ib],c[ib+1])BI[ib,jb]=G[sli,:]@Gjreturnbtddef_spectral_column_btd(self,elec,herm):"""Spectral function from a column array Returns a `BlockMatrix` class with only BTD blocks calculated. Parameters ---------- herm: bool if true, only calculate the lower triangular part, and copy the Hermitian part to the upper triangular part. Else, calculate the full matrix via MM. """G=self._green_column(self.elecs_pvt_dev[elec].ravel())nb=len(self.btd)Gam=self._data.gamma[elec]# Now calculate the full spectral functionbtd=BlockMatrix(self.btd)BI=btd.block_indexerc=self.btd_cum0ifherm:# loop columnsforjbinrange(nb):slj=slice(c[jb],c[jb+1])Gj=Gam@dagger(G[slj,:])foribinrange(max(0,jb-1),jb):sli=slice(c[ib],c[ib+1])BI[ib,jb]=G[sli,:]@GjBI[jb,ib]=BI[ib,jb].T.conj()BI[jb,jb]=G[slj,:]@Gjelse:# loop columnsforjbinrange(nb):slj=slice(c[jb],c[jb+1])Gj=Gam@dagger(G[slj,:])foribinrange(max(0,jb-1),min(jb+2,nb)):sli=slice(c[ib],c[ib+1])BI[ib,jb]=G[sli,:]@Gjreturnbtddef_spectral_propagate_array(self,elec,herm):nb=len(self.btd)nbm1=nb-1# First we need to calculate diagonal blocks of the spectral matrixblocks,A=self._green_diag_block(self.elecs_pvt_dev[elec].ravel())nblocks=len(blocks)A=A@self._data.gamma[elec]@dagger(A)# Allocate space for the full matrixS=np.empty([len(self),len(self)],dtype=A.dtype)c=self.btd_cum0S[c[blocks[0]]:c[blocks[-1]+1],c[blocks[0]]:c[blocks[-1]+1]]=AdelA# now loop backwardstX=self._data.tXtY=self._data.tYdefgs(ib,jb):returnslice(c[ib],c[ib+1]),slice(c[jb],c[jb+1])ifherm:# above leftforjbinrange(blocks[0],-1,-1):foribinrange(jb,0,-1):A=-tY[ib]@S[gs(ib,jb)]S[gs(ib-1,jb)]=AS[gs(jb,ib-1)]=A.T.conj()# calculate next diagonalifjb>0:S[gs(jb-1,jb-1)]=-S[gs(jb-1,jb)]@dagger(tY[jb])ifnblocks==2:# aboveforibinrange(blocks[1],1,-1):A=-tY[ib-1]@S[gs(ib-1,blocks[1])]S[gs(ib-2,blocks[1])]=AS[gs(blocks[1],ib-2)]=A.T.conj()# belowforibinrange(blocks[0],nbm1-1):A=-tX[ib+1]@S[gs(ib+1,blocks[0])]S[gs(ib+2,blocks[0])]=AS[gs(blocks[0],ib+2)]=A.T.conj()# below rightforjbinrange(blocks[-1],nb):foribinrange(jb,nbm1):A=-tX[ib]@S[gs(ib,jb)]S[gs(ib+1,jb)]=AS[gs(jb,ib+1)]=A.T.conj()# calculate next diagonalifjb<nbm1:S[gs(jb+1,jb+1)]=-S[gs(jb+1,jb)]@dagger(tX[jb])else:forjbinrange(blocks[0],-1,-1):# aboveforibinrange(jb,0,-1):S[gs(ib-1,jb)]=-tY[ib]@S[gs(ib,jb)]# calculate next diagonalifjb>0:S[gs(jb-1,jb-1)]=-S[gs(jb-1,jb)]@dagger(tY[jb])# leftforibinrange(jb,0,-1):S[gs(jb,ib-1)]=-S[gs(jb,ib)]@dagger(tY[ib])ifnblocks==2:# above and leftforibinrange(blocks[1],1,-1):S[gs(ib-2,blocks[1])]=-tY[ib-1]@S[gs(ib-1,blocks[1])]S[gs(blocks[1],ib-2)]=-S[gs(blocks[1],ib-1)]@dagger(tY[ib-1])# below and rightforibinrange(blocks[0],nbm1-1):S[gs(ib+2,blocks[0])]=-tX[ib+1]@S[gs(ib+1,blocks[0])]S[gs(blocks[0],ib+2)]=-S[gs(blocks[0],ib+1)]@dagger(tX[ib+1])# below rightforjbinrange(blocks[-1],nb):foribinrange(jb,nbm1):S[gs(ib+1,jb)]=-tX[ib]@S[gs(ib,jb)]# calculate next diagonalifjb<nbm1:S[gs(jb+1,jb+1)]=-S[gs(jb+1,jb)]@dagger(tX[jb])# rightforibinrange(jb,nbm1):S[gs(jb,ib+1)]=-S[gs(jb,ib)]@dagger(tX[ib])returnSdef_spectral_propagate_bm(self,elec,herm):btd=self.btdnb=len(btd)nbm1=nb-1BM=BlockMatrix(self.btd)BI=BM.block_indexer# First we need to calculate diagonal blocks of the spectral matrixblocks,A=self._green_diag_block(self.elecs_pvt_dev[elec].ravel())nblocks=len(blocks)A=A@self._data.gamma[elec]@dagger(A)BI[blocks[0],blocks[0]]=A[:btd[blocks[0]],:btd[blocks[0]]]iflen(blocks)>1:BI[blocks[0],blocks[1]]=A[:btd[blocks[0]],btd[blocks[0]]:]BI[blocks[1],blocks[0]]=A[btd[blocks[0]]:,:btd[blocks[0]]]BI[blocks[1],blocks[1]]=A[btd[blocks[0]]:,btd[blocks[0]]:]# now loop backwardstX=self._data.tXtY=self._data.tYifherm:# above leftforjbinrange(blocks[0],-1,-1):foribinrange(jb,0,-1):A=-tY[ib]@BI[ib,jb]BI[ib-1,jb]=ABI[jb,ib-1]=A.T.conj()# calculate next diagonalifjb>0:BI[jb-1,jb-1]=-BI[jb-1,jb]@dagger(tY[jb])ifnblocks==2:# aboveforibinrange(blocks[1],1,-1):A=-tY[ib-1]@BI[ib-1,blocks[1]]BI[ib-2,blocks[1]]=ABI[blocks[1],ib-2]=A.T.conj()# belowforibinrange(blocks[0],nbm1-1):A=-tX[ib+1]@BI[ib+1,blocks[0]]BI[ib+2,blocks[0]]=ABI[blocks[0],ib+2]=A.T.conj()# below rightforjbinrange(blocks[-1],nb):foribinrange(jb,nbm1):A=-tX[ib]@BI[ib,jb]BI[ib+1,jb]=ABI[jb,ib+1]=A.T.conj()# calculate next diagonalifjb<nbm1:BI[jb+1,jb+1]=-BI[jb+1,jb]@dagger(tX[jb])else:forjbinrange(blocks[0],-1,-1):# aboveforibinrange(jb,0,-1):BI[ib-1,jb]=-tY[ib]@BI[ib,jb]# calculate next diagonalifjb>0:BI[jb-1,jb-1]=-BI[jb-1,jb]@dagger(tY[jb])# leftforibinrange(jb,0,-1):BI[jb,ib-1]=-BI[jb,ib]@dagger(tY[ib])ifnblocks==2:# above and leftforibinrange(blocks[1],1,-1):BI[ib-2,blocks[1]]=-tY[ib-1]@BI[ib-1,blocks[1]]BI[blocks[1],ib-2]=-BI[blocks[1],ib-1]@dagger(tY[ib-1])# below and rightforibinrange(blocks[0],nbm1-1):BI[ib+2,blocks[0]]=-tX[ib+1]@BI[ib+1,blocks[0]]BI[blocks[0],ib+2]=-BI[blocks[0],ib+1]@dagger(tX[ib+1])# below rightforjbinrange(blocks[-1],nb):foribinrange(jb,nbm1):BI[ib+1,jb]=-tX[ib]@BI[ib,jb]# calculate next diagonalifjb<nbm1:BI[jb+1,jb+1]=-BI[jb+1,jb]@dagger(tX[jb])# rightforibinrange(jb,nbm1):BI[jb,ib+1]=-BI[jb,ib]@dagger(tX[ib])returnBMdef_spectral_propagate_btd(self,elec,herm):btd=self.btdnb=len(btd)nbm1=nb-1BM=BlockMatrix(self.btd)BI=BM.block_indexer# First we need to calculate diagonal blocks of the spectral matrixblocks,A=self._green_diag_block(self.elecs_pvt_dev[elec].ravel())A=A@self._data.gamma[elec]@dagger(A)BI[blocks[0],blocks[0]]=A[:btd[blocks[0]],:btd[blocks[0]]]iflen(blocks)>1:BI[blocks[0],blocks[1]]=A[:btd[blocks[0]],btd[blocks[0]]:]BI[blocks[1],blocks[0]]=A[btd[blocks[0]]:,:btd[blocks[0]]]BI[blocks[1],blocks[1]]=A[btd[blocks[0]]:,btd[blocks[0]]:]# now loop backwardstX=self._data.tXtY=self._data.tYifherm:# aboveforbinrange(blocks[0],0,-1):A=-tY[b]@BI[b,b]BI[b-1,b]=ABI[b-1,b-1]=-A@dagger(tY[b])BI[b,b-1]=A.T.conj()# rightforbinrange(blocks[-1],nbm1):A=-BI[b,b]@dagger(tX[b])BI[b,b+1]=ABI[b+1,b+1]=-tX[b]@ABI[b+1,b]=A.T.conj()else:# aboveforbinrange(blocks[0],0,-1):dtY=dagger(tY[b])A=-tY[b]@BI[b,b]BI[b-1,b]=ABI[b-1,b-1]=-A@dtYBI[b,b-1]=-BI[b,b]@dtY# rightforbinrange(blocks[-1],nbm1):A=-BI[b,b]@dagger(tX[b])BI[b,b+1]=ABI[b+1,b+1]=-tX[b]@ABI[b+1,b]=-tX[b]@BI[b,b]returnBMdef_scattering_state_reduce(self,elec,DOS,U,cutoff):"""U on input is a fortran-index as returned from eigh or svd"""# Select only the first N components where N is the# number of orbitals in the electrode (there can't be# any more propagating states anyhow).N=len(self._data.gamma[elec])# sort and take N highest valuesidx=np.argsort(-DOS)[:N]ifcutoff>0:# also retain values with large negative DOS.# These should correspond to states with large weight, but in some# way unphysical. The DOS *should* be positive.# Here we do the normalization depending on the number of orbitals# that is touched. This is important to make a uniformly defined# cutoff that does not depend on the device size.idx1=(np.fabs(DOS[idx])>=cutoff*U.shape[0]).nonzero()[0]idx=idx[idx1]returnDOS[idx],U[:,idx]
[docs]defscattering_state(self,elec,E,k=(0,0,0),cutoff=0.0,method:str="svd:gamma",*args,**kwargs,):r"""Calculate the scattering states for a given `E` and `k` point from a given electrode The scattering states are the eigen states of the spectral function: .. math:: \mathbf A_{\mathfrak e}(E,\mathbf k) \mathbf u_i = 2\pi a_i \mathbf u_i where :math:`a_i` is the DOS carried by the :math:`i`'th scattering state. Parameters ---------- elec : str or int the electrode to calculate the spectral function from E : float the energy to calculate at, may be a complex value. k : array_like, optional k-point to calculate the spectral function at cutoff : float, optional cutoff the returned scattering states at some DOS value. Any scattering states with normalized eigenvalues lower than `cutoff` are discarded. The normalization is done by dividing the eigenvalue with the number of orbitals in the device region. This normalization ensures the same cutoff value has roughly the same meaning for different size devices. Values above or close to 1e-5 should be used with care. method : {"svd:gamma", "svd:A", "full"} which method to use for calculating the scattering states. Use only the ``full`` method for testing purposes as it is extremely slow and requires a substantial amount of memory. The ``svd:gamma`` is the fastests while retaining complete precision. The ``svd:A`` may be even faster for very large systems with very little loss of precision, since it diagonalizes :math:`\mathbf A` in the subspace of the electrode `elec` and reduces the propagated part of the spectral matrix. cutoff_elec : float, optional Only used for ``method=svd:A``. The initial block of the spectral function is diagonalized and only eigenvectors with eigenvalues ``>=cutoff_elec`` are retained, thus reducing the initial propagated modes. The normalization explained for `cutoff` also applies here. Returns ------- scat : StateCElectron the scattering states from the spectral function. The ``scat.state`` contains the scattering state vectors (eigenvectors of the spectral function). ``scat.c`` contains the DOS of the scattering states scaled by :math:`1/(2\pi)` so ensure correct density of states. One may recreate the spectral function with ``scat.outer(matrix=scat.c * 2 * pi)``. """elec=self._elec(elec)self._prepare(E,k)method=method.lower().replace(":","_")func=getattr(self,f"_scattering_state_{method}",None)iffuncisNone:raiseValueError(f"{self.__class__.__name__}.scattering_state method is not [full,svd,propagate]")returnfunc(elec,cutoff,*args,**kwargs)
def_scattering_state_full(self,elec,cutoff=0.0,**kwargs):# We know that scattering_state has called prepare!A=self.spectral(elec,self._data.E,self._data.k,**kwargs)# add something to the diagonal (improves diag precision for small states)np.fill_diagonal(A,A.diagonal()+0.1)# Now diagonalize ADOS,A=eigh_destroy(A)# backconvert diagonalDOS-=0.1# TODO check with overlap convert with correct magnitude (Tr[A] / 2pi)DOS/=2*np.piDOS,A=self._scattering_state_reduce(elec,DOS,A,cutoff)data=self._datainfo=dict(method="full",elec=self._elec_name(elec),E=data.E,k=data.k,cutoff=cutoff)# always have the first state with the largest valuesreturnsi.physics.StateCElectron(A.T,DOS,self,**info)def_scattering_state_svd_gamma(self,elec,cutoff=0.0,**kwargs):A=self._green_column(self.elecs_pvt_dev[elec].ravel())# This calculation uses the cholesky decomposition of Gamma# combined with SVD of the A columnA=A@cholesky(self._data.gamma[elec],lower=True)# Perform svdDOS,A=_scat_state_svd(A,**kwargs)DOS,A=self._scattering_state_reduce(elec,DOS,A,cutoff)data=self._datainfo=dict(method="svd:Gamma",elec=self._elec_name(elec),E=data.E,k=data.k,cutoff=cutoff,)# always have the first state with the largest valuesreturnsi.physics.StateCElectron(A.T,DOS,self,**info)def_scattering_state_svd_a(self,elec,cutoff=0,**kwargs):# Parse the cutoff value# Here we may use 2 values, one for cutting off the initial space# and one for the returned space.cutoff=np.array(cutoff).ravel()ifcutoff.size!=2:cutoff0=cutoff1=cutoff[0]else:cutoff0,cutoff1=cutoff[0],cutoff[1]cutoff0=kwargs.get("cutoff_elec",cutoff0)# First we need to calculate diagonal blocks of the spectral matrix# This is basically the same thing as calculating the Gf column# But only in the 1/2 diagonal blocks of Gfblocks,u=self._green_diag_block(self.elecs_pvt_dev[elec].ravel())# Calculate the spectral function only for the blocks that host the# scattering matrixu=u@self._data.gamma[elec]@dagger(u)# add something to the diagonal (improves diag precision)np.fill_diagonal(u,u.diagonal()+0.1)# Calculate eigenvaluesDOS,u=eigh_destroy(u)# backconvert diagonalDOS-=0.1# TODO check with overlap convert with correct magnitude (Tr[A] / 2pi)DOS/=2*np.pi# Remove states for cutoff and size# Since there cannot be any addition of states later, we# can do the reduction here.# This will greatly increase performance for very wide systems# since the number of contributing states is generally a fraction# of the total electrode space.DOS,u=self._scattering_state_reduce(elec,DOS,u,cutoff0)# Back-convert to retain scale of the vectors before SVD# and also take the sqrt to ensure u u^dagger returns# a sensible value, the 2*pi factor ensures the *original* scale.u*=signsqrt(DOS*2*np.pi)nb=len(self.btd)cbtd=self.btd_cum0# Create full UA=np.empty([len(self),u.shape[1]],dtype=u.dtype)sl=slice(cbtd[blocks[0]],cbtd[blocks[0]+1])A[sl,:]=u[:self.btd[blocks[0]],:]iflen(blocks)>1:sl=slice(cbtd[blocks[1]],cbtd[blocks[1]+1])A[sl,:]=u[self.btd[blocks[0]]:,:]delu# Propagate A in the full BTD matrixt=self._data.tYsl=slice(cbtd[blocks[0]],cbtd[blocks[0]+1])forbinrange(blocks[0],0,-1):sln=slice(cbtd[b-1],cbtd[b])A[sln]=-t[b]@A[sl]sl=slnt=self._data.tXsl=slice(cbtd[blocks[-1]],cbtd[blocks[-1]+1])forbinrange(blocks[-1],nb-1):slp=slice(cbtd[b+1],cbtd[b+2])A[slp]=-t[b]@A[sl]sl=slp# Perform svd# TODO check with overlap convert with correct magnitude (Tr[A] / 2pi)DOS,A=_scat_state_svd(A,**kwargs)DOS,A=self._scattering_state_reduce(elec,DOS,A,cutoff1)# Now we have the full u, create it and transpose to get it in C indexingdata=self._datainfo=dict(method="svd:A",elec=self._elec_name(elec),E=data.E,k=data.k,cutoff_elec=cutoff0,cutoff=cutoff1,)returnsi.physics.StateCElectron(A.T,DOS,self,**info)
[docs]defscattering_matrix(self,elec_from,elec_to,E,k=(0,0,0),cutoff=0.0):r""" Calculate the scattering matrix (S-matrix) between `elec_from` and `elec_to` The scattering matrix is calculated as .. math:: \mathbf S_{\mathfrak e_{\mathrm{to}}\mathfrak e_{\mathrm{from}} }(E, \mathbf) = -\delta_{\alpha\beta} + i \tilde{\boldsymbol\Gamma}_{\mathfrak e_{\mathrm{to}}} \mathbf G \tilde{\boldsymbol\Gamma}_{\mathfrak e_{\mathrm{from}}} Here :math:`\tilde{\boldsymbol\Gamma}` is defined as: .. math:: \boldsymbol\Gamma(E,\mathbf k) \mathbf u_i &= \lambda_i \mathbf u_i \\ \tilde{\boldsymbol\Gamma}(E,\mathbf k) &= \operatorname{diag}\{ \sqrt{\boldsymbol\lambda} \} \mathbf u Once the scattering matrices have been calculated one can calculate the full transmission function .. math:: T_{\mathfrak e_{\mathrm{from}}\mathfrak e_{\mathrm{to}} }(E, \mathbf k) = \operatorname{Tr}\big[ \mathbf S_{\mathfrak e_{\mathrm{to}}\mathfrak e_{\mathrm{from}} }^\dagger \mathbf S_{\mathfrak e_{\mathrm{to}}\mathfrak e_{\mathrm{from}} }\big] Parameters ---------- elec_from : str or int the electrode where the scattering matrix originates from elec_to : str or int or list of where the scattering matrix ends in. E : float the energy to calculate at, may be a complex value. k : array_like, optional k-point to calculate the scattering matrix at cutoff : float, optional cutoff the eigen states of the broadening matrix that are below this value. I.e. only :math:`\lambda` values above this value will be used. A too high value will remove too many eigen states and results will be wrong. A small value improves precision at the cost of bigger matrices. Returns ------- scat_matrix : numpy.ndarray or tuple of numpy.ndarray for each `elec_to` a scattering matrix will be returned. Its dimensions will be depending on the `cutoff` value at the cost of precision. """# Calculate the full column green functionelec_from=self._elec(elec_from)is_single=Falseifisinstance(elec_to,(Integral,str,PivotSelfEnergy)):is_single=Trueelec_to=[elec_to]# convert to indiceselec_to=[self._elec(e)foreinelec_to]# Prepare calculation @ E and kself._prepare(E,k)self._prepare_tgamma(E,k,cutoff)# Get full G in column of 'from'G=self._green_column(self.elecs_pvt_dev[elec_from].ravel())# the \tilde \Gamma functionstG=self._data.tgamma# Now calculate the S matricesdefcalc_S(elec_from,jtgam_from,elec_to,tgam_to,G):pvt=self.elecs_pvt_dev[elec_to].ravel()g=G[pvt,:]ret=dagger(tgam_to)@g@jtgam_fromifelec_from==elec_to:min_n=np.arange(min(ret.shape))np.add.at(ret,(min_n,min_n),-1)returnrettgam_from=1j*tG[elec_from]S=tuple(calc_S(elec_from,tgam_from,elec,tG[elec],G)forelecinelec_to)ifis_single:returnS[0]returnS
[docs]defeigenchannel(self,state,elec_to,ret_coeff=False):r""" Calculate the eigenchannel from scattering states entering electrodes `elec_to` The energy and k-point is inferred from the `state` object as returned from `scattering_state`. The eigenchannels are the eigen states of the transmission matrix in the DOS weighted scattering states: .. math:: \mathbf A_{\mathfrak e_{\mathrm{from}} }(E,\mathbf k) \mathbf u_i &= 2\pi a_i \mathbf u_i \\ \mathbf t_{\mathbf u} &= \sum \langle \mathbf u | \boldsymbol\Gamma_{ \mathfrak e_{\mathrm{to}} } | \mathbf u\rangle where the eigenvectors of :math:`\mathbf t_{\mathbf u}` are the coefficients of the DOS weighted scattering states (:math:`\sqrt{2\pi a_i} u_i`) for the individual eigen channels. The eigenvalues are the transmission eigenvalues. Further details may be found in :cite:`Paulsson2007`. Parameters ---------- state : sisl.physics.StateCElectron the scattering states as obtained from `scattering_state` elec_to : str or int (list or not) which electrodes to consider for the transmission eigenchannel decomposition (the sum in the above equation) ret_coeff : bool, optional return also the scattering state coefficients Returns ------- T_eig : sisl.physics.StateCElectron the transmission eigenchannels, the ``T_eig.c`` contains the transmission eigenvalues. coeff : sisl.physics.StateElectron coefficients of `state` that creates the transmission eigenchannels Only returned if `ret_coeff` is True. There is a one-to-one correspondance between ``coeff`` and ``T_eig`` (with a prefactor of :math:`\sqrt{2\pi}`). This is equivalent to the ``T_eig`` states in the scattering state basis. """self._prepare_se(state.info["E"],state.info["k"])ifisinstance(elec_to,(Integral,str,PivotSelfEnergy)):elec_to=[elec_to]# convert to indiceselec_to=[self._elec(e)foreinelec_to]# The sign shouldn't really matter since the states should always# have a finite DOS, however, for completeness sake we retain the sign.# We scale the vectors by sqrt(DOS/2pi).# This is because the scattering states from self.scattering_state# stores eig(A) / 2pi.sqDOS=signsqrt(state.c).reshape(-1,1)# Retrive the scattering states `A` and apply the proper scaling# We need this scaling for the eigenchannel construction anyways.A=state.state*sqDOS# create shorthandselec_pvt_dev=self.elecs_pvt_devG=self._data.gamma# Create the first electrodeel=elec_to[0]idx=elec_pvt_dev[el].ravel()# Retrive the scattering states `A` and apply the proper scaling# We need this scaling for the eigenchannel construction anyways.u=A[:,idx]# the summed transmission matrixUt=u.conj()@G[el]@u.T# same for other electrodesforelinelec_to[1:]:idx=elec_pvt_dev[el].ravel()u=A[:,idx]Ut+=u.conj()@G[el]@u.T# TODO currently a factor depends on what is used# in `scattering_states`, so go check there.# The resulting Ut should have a factor: 1 / 2pi ** 0.5# When the states DOS values (`state.c`) has the factor 1 / 2pi# then `u` has the correct magnitude and all we need to do is to add the factor 2pi# diagonalize the transmission matrix tttt,Ut=eigh_destroy(Ut)tt*=2*np.piinfo={**state.info,"elec_to":tuple(self._elec_name(e)foreinelec_to)}# Backtransform U to form the eigenchannelsteig=si.physics.StateCElectron(Ut[:,::-1].T@A,tt[::-1],self,**info)ifret_coeff:returnteig,si.physics.StateElectron(Ut[:,::-1].T,self,**info)returnteig